Answer:
Option D
Explanation:
Key idea: Momentum is conserved in all type of collisions,
Final kinectic energy is 50% more than initial kinetic energy
$\Rightarrow\frac{1}{2}mv_{2}^{2}+\frac{1}{2}mv_{1}^{2}\Rightarrow\frac{150}{100}\times\frac{1}{2}mv_{0}^{2}.....(i)$
Conservation of momentum gives,
$mv_{0}=mv_{1}+mv_{2}$
$v_{0}=v_{1}+v_{2}......(ii)$
From eq.(i) and (ii), we have
$v_{1}^{2}+v_{2}^{2}+2v_{1}v_{2}=v_{0}^{2}$
$\Rightarrow2v_{1}v_{2}=\frac{-v_{0}^{2}}{2}$
$\therefore (v_{1}^{2}-v_{2}^{2})^{2}=(v_{1}^{2}
+v_{2}^{2})^{2}-4v_{1}v_{2}=2v_{0}^{2}$
or $v_{rel}=\sqrt{2}v_{0}$